A CASE-BASED PLANNER TO AUTOMATE REUSE OF ES SOFTWARE FOR ’
ANALYSIS OF REMOTE SENSING DATA

D. Charlebois§, J.-F. DeguiseT, D. Goodenough*, S. Matwin§, M. Robson'r

§Dcpanmint of Computer Science, University of Ottawa, Ottawa, Canada

Canada Centre for Remote Sensing, Ottawa, Canada
TImcra—Kenting, Ottawa, Canada

ABSTRACT

The Canada Centre for Remote Sensing (CCRS) has created
an expert system shell as well as an expert system whose task
is to provide image analysis programs (Landsat Digital Image
Analysis System - LDIAS) with the necessary knowledge to
solve difficult image processing problems (e.g.: updating
Geographic Information Systems). An ILTI (Interactive
LDIAS Task Interface) provides an expert system with a
Prolog module designed to answer queries from an LDIAS
program by retrieving knowledge from an image analysis
knowledge base, the Analyst Advisor (AA). Image analysis
experts currently create ILTYs. They have found this to be a
time consuming task. Our goal is to design an
incrementalladaptive planner that will create a plan that emulates
the ILTI’s behavior by analyzing image processing session
dialogs between an image analysis expert and an LDIAS
program.

Keywords:Machine learning, Planning, Software reuse, Expert
systems.

1 INTRODUCTION

Expert system (ES) software for the analysis of Remote

Sensing (RS) data often relies on existing program libraries for
specific analysis tasks. The Analyst Advisor Expert System
developed at CCRS [1] is an example of this approach. The
knowledge encoded in the Analyst Advisor can be conceptually
classified into three categories: 1) the factual knowledge: what
imaging data are required to solve a specific RS problem (e.g.
device on which to calculate image gradients), 2) the control or
procedural knowledge: what lower-level experts are required to
process the knowledge and in what sequence (e.g. perform
maximum likelihood analysis for supervised classification after
having selected training sites), and 3) the actual domain
knowledge: what are the computational processes required to
provide the specific domain expertise (e.g. the code to compute
maximum likelihood probabilities on areas of pixels). The
Analyst Advisor uses the RESHELL ES shell to represent the
factual and control knowledge, and relies on the FORTRAN

code contained in LDIAS (Landsat Digital Image Analysis.

System, {1]) for the domain knowledge. Consequently, there is
a need to interface between Prolog- and frame-oriented
structures used to represent the factual and control knowledge
with the FORTRAN code that implements the domain experts.
In the AA, this interface is provided in the form of ILTI
(Interactive LDIAS Task Interface, [4]). Each time a new expert

1851

is developed, an ILTI has to be built to integrate the application
software with the ES. Development of an ILTI is a non-trivial
task requiring expertise in the intricacies of RESHELL. In
order to ease the task of the users having to develop new
experts, we have set out to build tools to automate the task of
constructing an ILTIL

This paper introduces the use of planning to create ILTIs
from examples of the dialogue between an image analyst and an
LDIAS task. This approach allows an expert to train the
planner by presenting it with a number of typical execution runs
of an LDIAS task. The planner creates a plan which integrates
all the steps that have occurred in the example runs {5] . This
plan is subject to a knowledge-based generalization, so that the
resulting generalized procedure will provide an interface for an
entire class of applications of a given task. This class will re-
use sections of plans given to the planner during training, and
extend those plans by simple analogical reasoning.

Section 2 describes the current methodology of interface
development, and presents the parameters of the problem.
Section3 presents the planning and the learning component of
our system: Section 4 concludes by discussing the possible
evaluation of the system, and outlining future work.

2 ILTI DESIGN

The first major consideration in designing the planner was to
preserve as much as possible of the existing program behavior
and thus reduce the amount of recoding of different modules.
The existing system has two knowledge bases:

« a global knowledge base (advisor-frames),

« a local knowledge base dedicated to each LDIAS program

(task-frames).

It is also composed of five different program modules:

+ RESHELL-expert,

+ CA-module,

« ILTI-module

« ILTI-engine,

+ LDIAS-task.

The RESHELL-expert is an expert system that requests an
image analysis task by firing a predicate supplied by the CA-
module. The CA-module (condition-action module) prepares
knowledge for a given task by getting information from the AA
knowledge base (advisor-frames) and storing it in a local
knowledge base (task-frames). When the CA-module has
finished copying knowledge from the advisor-frames to the
task frames, it calls the ILTI-module to initiate the
communication with the LDIAS-task. The ILTI-module then
starts the LDIAS-task by using procedures provided by the
ILTI-engine and then sees to answering any questions from the
LDIAS-task by querying the task-frames.

For each LDIAS program, there is an interface as described
above; hence our requirement to function within the same

CH2971-0/91/0000-1851$01.00 © 1991 IEEE

framework.

Figure 1 introduces a new design where the components
were defined to facilitate the use of a planner. The RESHELL-
expert must still start the LDIAS program, but most of the
knowledge that could be found in the CA-module predicates is
now stored in-expert system rules. However, the CA-module
now supplies the expert system with predicates that handle
tasks which are difficult for expert system rules.

The ILTI-engine provides exactly the same functionality as it
did previously as do the LDIAS-task, the advisor-frames and

the task-frames.

Partial ptan
ILTI engine

Partial plan
LDIAS-task

figure 1 - new expert system architecture

The plan executor, the plans and partial plans [2] now
replace the ILTI-module. The Plan-executor supervises plan
execution to insure proper behavior. A plan is a set of clauses
that supply the appropriate information to an LDIAS program
given a particular request. Partial-plans are pieces of plans
destined for reuse by the same plan as well as other plans.

3 THE PLANNER

Two major design considerations must be addressed before
any details of the general design can be laid out.

First, contrary to most planning environments, this planner
does not have prior knowledge of possible states for an LDIAS
task, nor does it know all the legal transitions from a given
state. In this sense, the planner must be adaptive and let the
trainer guide it through a new sequence of state transitions or a
thread of execution (an important assumption here is that a new
thread provided by the user and the LDIAS task is always
legal).

Second, the planner must work in an incremental fashion.
One execution of the task does not provide the planner with all
possible execution threads through the program. In fact, it
supplies an unambiguous, single thread. For most LDIAS
software, several threads can exist and the planner must be able
to add new threads to the existing one(s) incrementally.

Given an existing ILTI, the planner should supervise a user
dialog with the LDIAS task and react when a prompt or an
answer to a prompt does not match what has previously been
recorded for the ILTI. The result of this reaction would be to
add, incrementally, the appropriate predicates to handle the new
thread of execution,

3.1 SYSTEM COMPONENTS

The planner has three essential components (see figure 2):

» the planner module,

« the planner knowledge base:

- plans,
- partial plans,
- micro-plans,
» the RESHELL knowledge base:
- advisor frames,
- planner taxonomy.

The planner module is an adaptivelincremental planner that
reacts to new interactions between a domain expert (for AA, an
image analysis expert/researcher) and an LDIAS task. A new
interaction is a dialog between the domain expert and an LDIAS
task that the planner has not seen previously and, thus has not
provided for in a plan. In these circumstances, the knowledge
contained in the plan developed so far by the planner must be
extended (new alternatives must be added to the plan).

1852

The LDIAS task execution through the use of a plan can
best be expressed by:

set up LDIAS task parameters
start LDIAS task

repeat
get prompt from LDIAS task

process prompt and return answer
until normal disconnect request or LDIAS task abortion

Each iteration through this loop should place the plan in a
new state. The state transitions are fired when an answer is
provided by the advisor-frames or by the domain expert.

Given this algorithm, two situations involve unrecognizable
prompts:

+ when working from scratch (i.e.: a plan did not exist for
the LDIAS task at hand),

« when no answer can be found in the advisor-frames or
when the domain expert replies with an unknown
answer (one for which a state transition does not exist).

The planner must recognize the occurrences of these events
and handle them in the appropriate manner.

Detecting when the system is working from scratch is trivial
and can be done in different ways, the simplest being to check
for the presence of a plan dedicated to the LDIAS task at hand.

However, detecting if the domain expert replies with an
unknown answer will require more extensive processing. The
planner must:

+ process the prompt and identify the object(s) the LDIAS
task needs,

» process the objects, with help from the domain expert,
to determine if the AA has knowledge of the objects at
this stage of processing, or if they should be added to
it,

» create a new state identifier and state transition predicate.

Advisor
trames

l Pians.

ranm plan:

Domain expert
Tralner

peplans

Trainer
Intartace

figure 2 - planner design

Planner knowledge base

The task of processing the prompts and identifying the
objects being manipulated is assigned to the Front-end Dialog
Processor (FDP) (see figure 3). By using a language defined
with a Definite Clause Grammar (DCG), the FDP can analyze
each prompt and identfy the actions and the objects used by the
LDIAS task and place them in a symbol table. This will allow
the planner to recognize the different contexts where objects are
used.

Once the objects have been identified, the Object & State
Processor (OSP) has essential tasks to accomplish. First the
OSP must process the objects. If the objects in the LDIAS task
prompt have not been recorded in the advisor-frames or the
planner taxonomy, the planner must determine:

« if an object is created and used only during the execution
of the current LDIAS task,

« if an object should normally be output from another
LDIAS task and used by the current task,

« if an object is created by the current LDIAS task and if it
should be output and made available to other LDIAS
tasks.

The second task the OSP must perform is to trace the state
transitions the plan executor fires. As known answers are

given to prompts, the ILTI changes states. When an answer
for which there is no legal transition exists, the OSP must
create a new legal transition from the current state given the
new input. This will trigger a dialog between the trainer and
the planner. The planner will have to determine if the new
transition leads to an existing state or if it leads to a new state.

If a new transition leads to an existing state, the planner
simply has to add a new legal transition to the FSM (finite
state machine) since the initial state and final state for the new
transition are known. Also, if the initial and final states of
different transitions are the same, Machine Learning (ML)
processing may be necessary to generalize and possibly merge
the transitions.

If a new transition leads to a new state, the state transition
must be added to the FSM and the process repeated.

Whenever the planner cannot determine the origin of an
object, its use by other LDIAS tasks or its place in the planner
taxonomy or the advisor-frames, the trainer interface must
present the problem to the domain expert in order to classify the
object. The dialog between the domain expert and the planner
will depend on the amount of knowledge the planner has
gathered about the object.

Partial-plans and micro-plans are the main building blocks
used by the planner. Partial-plans are sequences of state
transitions that are designed to answer the needs of frequent
occurrences of similar behavior. More specifically, LDIAS
programs usually process objects that have the same general
structure. Since these objects have the same attributes,
gathering their particular values can be accomplished using the
same subsequences of plans leading to the reuse of partial-
plans. The most prominent example is that most, if not all,
LDIAS programs require image files as input or output. In
these cases, a partial-plan that can build a file specification can
be reused. Micro-plans are very simple, generalized state
transitions that can be used to answer prompts that occur often.

3.2 PLANNER OUTPUT

Since the goal of the planner is to create and/or extend plans,
its design must include a detailed description of its output. As
an example, we have used the SEGGRA LDIAS program.
This program is used to create a ‘gradient image file for the
purpose of segmentation. By using a log produced by
SEGGRA we can step through the plan creation process.

Two problems must be addressed:

* how to select state names,
« how to determine the current state and fire a transition.

Although as programmers, we have complete latitude over
state name selection, the plans must have state names that are
easy to generate automatically and that are understandable to a
domain expert. Also, since the planner must produce a plan
that functions within the existing RESHELL/AA framework,
the state-checking and transition-firing mechanisms must be
added without altering the behavior of the ILTI-engine or
RESHELL-experts.

When an LDIAS task executes, it follows a thread of
execution according to the answers that a user has provided.
From a different perspective it can be seen that:

« each prompt indicates what state the LDIAS task is in,

+ each answer is the input that fires a state transition.
These two statements motivate:

« using actual prompts as state names,

« using actual user input to create a transition table.

3.2.1 AN LDIAS EXAMPLE (SEGGRAY

Although the new ILTI for SEGGRA ,expressed as a FSM,
does not handle as much as its original version (the handcoded

ILTI), the new ILTI does provide further understanding of the

work involved in its automatic generation.

By carefully studying a SEGGRA execution log, state names
and state transitions can easily be identified and subsequently
encoded in the ILTL The first prompt the domain expert has to
answer is:

1853

Select device on which to perform gradient operation
Enter one of VDP UNIDSK {UNIDSK} >

Hence the choice for the initial state name is:
device_to_perform_gradient_operation
The answer given by the domain expert is:
unidsk

Hence the creation of a state transition from the initial state
(device_to_perform_gradient_operation) to the next state
(whose name remains to be determined) upon the input unidsk.

Before memorizing the transition, the next state must be
determined. This can be accomplished by using the next
prompt:

Enter input UNIDSK filename specification

We can now create a state transition expressed as the Prolog
clause:

transition(
device_to_perform_gradient_operation,
unidsk,
enter_input_unidsk_filename_specification

).

The clause that will fire a state transition through knowledge
base access is:

process_state :- -
state(device_to_perform_gradient_operation),
frame_get(seggra, input_device, ANSWER),
transition(device_to_perform_gradient_operation, ANSWER, STATE),

set_state(STATE).

In section 3.1.1 it was stated that there were three different
types of objects:
« objects created and used only during the execution of the
current LDIAS task,

* objects created by the execution of previous LDIAS tasks

and used by the current task,

* objects created during the execution of the current LDIAS

task and made available to other tasks.

The predicates designed above serve as a template for the
generation of predicates that handle objects created by the
execution of previous LDIAS tasks and used by the current
task.

Objects created and used only during the execution of the
current LDIAS task can be handled in two different ways:

« ask the LDIAS user to supply the data,

» hardcode a default reply for the LDIAS task question.

In the SEGGRA log, one such object would be the reply to
the question:

Display Histogram of gradient? (Yes/No)
Enter one of YES NO {YES} >

Given our knowledge of the task at hand, it is preferable to
have the ILTT ask the user, hence the predicate:

process_state ;-
state(display_histogram_of_gradient),
write(‘Display Histogram of gradient?"),
write(*Enter one of YES NO {YES}’),
read(ANSWER),
transition(display_histogram_of_gradient, ANSWER, STATE),
set_state(STATE).

Had our choice been to hardcode the default value no, the
result would be:

process._state :-
state(display_histogram_of_gradient),
wransition(display_histogram_of_gradient, no, NEWSTATE),
set_state(NEWSTATE).

The final case is for objects created during the execution of
the current LDIAS task and made available to other tasks. In
the SEGGRA log, the output gradient file is such an object
since it will be subsequently used by the segmentation program
(this is known because of dialog with the domain expert).

Given that RESHELL provides daemons to handle querying
of the advisor-frames, the predicate that can get the output file
name is:

process_stale :-
state(enter_output_filename_specification),
frame_get(seggra, output_filename, ANSWER),
transition(
enter_output_filename_specification,
ANSWER,
STATE

)
set_state(STATE). -

We need only create a daemon that will ask the LDIAS task
user for a filename and add an if _needed facet for the
output_filename slot of the seggra frame:

frame(seggra, output_filename, if_needed, get_output_filename).

We can interpret this clause as a specification of the
if needed facet described above, and its meaning is:

if a frame_get is attempted for the seggra frame slot
output_filename

and
no value exists

then
fire the daemon get_output_filename

The get_output_filename daemon for the seggra frame slot
output_filename would be:

daemon(seggra, output_filename, get_output_filename, ANSWER) :-
write{ ‘Enter output UNIDSK filename specification’),
read(ANSWER),
frame_put(seggra, output_filename, ANSWER).

By using this approach, only three process_state clause
templates are necessary. The first is for objects provided by the
LDIAS task user and used only locally. The second provides
default values. The third is for objects that must be stored in
the advisor-frames.

4 CONCLUSION

The paper shows a design of a case-based planner that
applies machine learning techniques to the problem of
automated re-use of specialized interfaces between the factual
knowledge and the domain knowledge in a RS expert system.
The planner is currently being developed at CCRS. Early
experience indicates that even after a successful
implementation, several important research issues remain to be
addressed. The problem of evaluation of the planner is the first
such issue. How to measure success or failure of the proposed
approach, compared to the existing manual procedure? A
simple way to evaluate the utility of the planner would be to
assess the effort that will go into creation of several interfaces
using the planner, as opposed to the normal, manual procedure
of interface development. Another question is how best to train
the planner. This is the problem of sclection of wraining runs
that will be processed by the proposed system. Should they all
be similar? Or should they rather cover a broad spectrum of
possible uses of the same task expert, at the expense of
intensive user dialogue with the planner? One can expect that
different trainers may develop individual styles of training the
planner, just as there are individual styles of teaching.

1854

(1]

[2]

(3]

[4]

(5]

'REFERENCES

Goodenough, D.G., Goldberg, M., Plunket, G., Zelek,
J., 1987, An Expert System for Remote Sensing, IEEE
Transactions on Geoscience and Remote. Sensing, Vol.
GE-25, no. 3, pp 349-359.

Hendler, J., Tate, A., Drummond, M., 1990, A planning:
systems and techniques, Al magazine, vol. 11 no. 2
summer 1990, p82.

]

Riesbeck, C.K., Schank, R.C., 1989, Inside Case-based
Reasoning, Lawrence Erlbaum Associates, Publishers.

Robson, M., Goodenough, D.G., Deguise, IC., 1990,
Automated Program Execution in a Hierarchical Expert
System: RESHELL, Proceedings of the 23rd DECUS
Canada Symposium.

Waterman, D., Faught, W, Klahr, P., Rosenschein, S.,
Wesson, R., 1986, Exemplary programming: applications
and design considerations, In Expert systems: techniques,
tools and applications, edited by Klahr, P. and Waterman
D., Addison-Wesley, pp 273-309.

