Reuse of Plans as a Tool for Development of Remote Sensmg Expert Systems

D. Charleb01s§, D. Goodenough S. Matwm§ M. Robson

§

, K. Fung

Department of Computer Science, University of Ottawa, Ottawa, Canada

+ . : . .
Paslfic Forestry Centre, Forestry Canada, Victoria, Canada
Canada Centre for Remote Sensing, Ottawa, Canada
TIntera-Kenting, Ottawa, Canada

ABSTRACT

Systems involving remote sensing analysis for
satellite data in combination with geographic
information systems are large and complex. The
Canada Centre for Remote Sensing (CCRS) has
created an expert system shell and several expert
systems in order to provide image analysis programs
with the necessary knowledge to solve difficult
image processing problems, such as updating forest
inventory geographic information systems. An
Interactive Task Interface (ILTI) provides an expert
system with a Prolog module designed to answer
queries from an image analysis program by
retrieving knowledge from an image analysis
knowledge base. Image analysis experts currently
create ILTIs. They have found this to be a time
consuming task. We have developed a planner that
creates plans that emulate an ILTI's behavior by
analyzing image processing session dialogs between
a human expert and an image analysis program. The
planner relies on a knowledge base in order to
generalize and modify plans acquired from session
dialogs.
INTRODUCTION

Existing remote sensing (RS) software libraries
often represent considerable investment on behalf of
organizations that have developed them. Moreover,
such libraries require considerable computer skills to
be applied by end-users. By using the Artificial
Intelligence paradigm we aim to bridge the gap
between non-programmer end-users and the large
repositories of domain knowledge encoded in
FORTRAN. The Analyst Advisor Expert System
developed at CCRS [2] is an example of this
approach. The knowledge encoded in the Analyst
Advisor -can be conceptually classified into three
categories: 1) factual knowledge: what imaging data
are required to solve a specific RS problem (e.g.:
device on which to calculate image gradients), 2)
control or procedural knowledge: what lower-level
expertise is required to process the knowledge and in
what sequence (e.g.: perform maximum likelihood
analysis for supervised classification after having
selected training sites), and 3) actual domain
knowledge: what are the computational processes
required to provide the specific domain expertise
(e.g.: the code to compute maximum likelihood
probabilities on areas of pixels). The Analyst
Advisor uses the RESHELL ES shell to represent the
factual and control knowledge, and relies on the
FORTRAN code contained in LDIAS (Landsat Digital
Image Analysis System [2]) for the domain
knowledge. Consequently, there is a need to

1493

interface between Prolog (and frame structures that
represent factual and control knowledge) with the
FORTRAN code that implements the domain experts.
In the existing Analyst Advisor system, the
interface was implemented by means of ILTIs
(Interactive LDIAS Task Interface). An ILTI is a
PROLOG program which handles the 1/O
requirements of both the expert RESHELL modules
and the associated LDIAS programs. Each time a new
expert which makes use of LDIAS procedures is
developed, an ILTI for it has to be programmed from
scratch. The task of developing of an ILTI is non-
trivial and requires specialized knowledge of
representation mechanism of RESHELL on one hand,
and familiarity with PROLOG procedures that handle
I/O requests for different types of I/O devices on the
other hand.

This paper presents continuation of work described
in {1] and introduces the use of planning to create
ILTIs from examples of the dialogue between an
image analyst and an LDIAS program. The approach
allows an expert to train the planner by presenting
it with a number of typical execution runs of an
LDIAS task. The planner creates a plan which
integrates all the steps that have occurred in the
example runs [8]. The plan is subject to a
knowledge-based generalization, so that the
resulting generalized procedure will provide an
interface for an entire class of applications of a
given task. This class will re-use sections of plans
given to the planner during training, and extend
those plans by simple analogical reasoning. The
system that we have developed is dubbed LEAR
(LEarning Advisor Rules).

To summarize, LEAR relies on the following Al
techniques to build RESHELL interfaces:

» Exemplary Programming, i.e. the methodology
which attempts to build programs from
examples of their I/O behavior [8],

+ Planning, i.e. the methodology which attempts
to build sequences of actions (referred to as
microplans) that, when executed, guarantee the
achievement of prescribed goals [3],

e Machine Learning, the methodology which
provides for goal-oriented and knowledge-
oriented generalization of experience, acquired
from individual cases [4].

The next section describes the current methodology
of interface development, and presents the
parameters of the problem. We then briefly discuss
the planning and the learning component of our
system. Subsequent section contains the initial
results obtained from experimentation. We conclude
by discussing the possible evaluation of the system,
and outlining future work.

91-72810/92$03.00 © IEEE 1992

ILTI DESIGN

An ILTI is a knowledgeable interface between a user
and an LDIAS program. Its function is to provide
answers to the LDIAS program prompts by
consulting a knowledge base or, if no answer is
found, by questioning a user. Consequently, an ILTI
can be viewed as a program that, when executed,
realizes a certain plan. Elements of this plan
perform I/O actions consulting a knowledge base or,
alternatively, accepting input from a user.
Continuing with this
execution of an ILTI corresponds to the execution of
a conditional plan. The actual form of a plan is
decided by the user input and the history of the plan
so far. It becomes clear form the above model that,
given the dependence of the next plan execution
step on the input and on the history of the plan
development so far, a finite state machine is the
appropriate framework in which to represent plans
for our purposes.

f(8)
I
flp) I'I,‘ <«data> LDIAS
R Ka) I program
E

ILTI/PLAN

Figure 1: A plan

Figure 1 illustrates how a plan functions. The
expert system that activates the plan's execution is
not shown. A plan would normally start in an
initial state which should agree to the first prompt
from the corresponding LDIAS program. For each
state, there exists a micro-plan (similar to operators
in traditional planning terminology) that computes
the input that fires a state transition (e.g.: B). Once
the state transition has been fired, the output from
the state transition (e.g.: f(8)) is sent to the waiting
LDIAS program through the ILTIE (ILTI-Engine: a
PROLOG module that implements communications
between RESHELL and an LDIAS program) as the
answer to the prompt. In short, for each LDIAS
program there exists a plan that can satisfy different
goals given input to state transition. Each state is
associated to a specific prompt. Input to states fire
transitions that produce output to answer prompts
and lead to new states.

Three major design considerations must be addressed
before any details of the general design can be laid
out. First, contrary to most planning environments,
this planner does not have prior knowledge of
possible states for an LDIAS program, nor does it
know all the legal transitions from a given state. In
this sense, the planner must be adaptive and let the
user guide it through a new sequence of state
transitions or path (an important assumption here is

1494

planning perspective,

that a new path provided by the user and the LDIAS
program is always legal).

Second, the planner must work in an incremental
fashion since one execution does not provide the
planner with all possible paths through the
program. In fact, it displays an unambiguous,
single path. For most LDIAS software, several
paths can exist and the planner must be able to add
new paths to the existing one(s) incrementally.
Given an existing ILTI, the planner should supervise
a user dialog with the LDIAS program and react when
the answer to a prompt does not match those that
have previously been recorded for the ILTI. The
result of this action would be to add, incrementally,
the appropriate predicates that would handle the new
path.

Plannes-leamaer

Figure 2: General LEAR design

Figure 2 introduces a new design where the
components were defined to facilitate the use of a
planner. The RESHELL-expert's task is to start an
LDIAS program as well as to initialize the
knowledge base to provide the program with the
appropriate data to satisfy a given goal. The CA-
module (Condition/Action module) supplies the
expert system with predicates that perform tasks
which are difficult for expert system rules. The ILTI-
engine provides the same functionality as described
previously. '
The Plan-executor supervises plan execution to
ensure proper behavior. A plan is a sequence of
actions that supply the appropriate information to
an LDIAS program given a particular request.
Partial-plans are parts (subsequences) of plans
destined for reuse by the same plan as well as other
plans.
THE PLANNER

The planner has three essential components (figure
3):
¢ the planner module,
* the planner knowledge base:
- plans,
- partial plans,
- micro-plans,
» the RESHELL knowledge base:
- advisor frames,
- planner taxonomy.
The planner module is an adaptive/incremental
planner that reacts to new interactions between a
domain expert (e.g.: an image analysis
expert/researcher) and an LDIAS program. A new
interaction is a dialog between the domain expert

and an LDIAS program that the planner has not seen
previously and, thus has not provided for in a plan.
In these circumstances, the knowledge contained in
the plan developed so far by the planner must be
extended (new alternatives must be added to the
plan).

Advisor
frames

Fronl-end &
Dialog Processor 3
Object & Slale Planner
Processor taxonomy
SR SRR
Knowledge Base RESHE.L Knowledge base
Manager
Domain expert
Yrainer Teainer artial plai
Interface u-plans

Planner knowledge base
Figure 3: Planner Design

The LDIAS program execution through the use of a
plan can best be expressed by:
set up LDIAS program parameters
start LDIAS program
repeat
get prompt from LDIAS program
process prompt and return answer
until normal disconnect or program abortion
Each iteration through this loop should place the
plan in a new state. The state transitions are fired
when an answer is provided by the frames knowledge
base or by the domain expert.
Given this algorithm, two situations involve
unrecognizable prompts:

- when working from scratch (i.e.: a plan did not
exist for the LDIAS program at hand),

« when no answer can be found in the frames
knowledge base or when the domain expert
replies with an unknown answer (one for which
a state transition does not exist).

The planner must recognize the occurrences of these
events and handle them in the appropriate manner.
Detecting when the system is working from scratch
is trivial and can be done in different ways, the
simplest being to check for the presence of a plan
dedicated to the LDIAS program at hand.

However, detecting if the domain expert replies
with an unknown answer will require more extensive
processing. The planner must:

« process the prompt and identify the object(s) the
LDIAS program needs,

+ process the objects, with help from the domain
expert, to determine if the knowledge base
contains knowledge of the objects at this stage
of processing, or if they should be added to it,

« create a new state identifier and state transition
predicate. _

The task of processing the prompts and identifying
the objects being manipulated is assigned to the

Front-end Dialog Processor (FDP) (figure 3). Using
simple pattern matching, the FDP can analyze each
prompt and identify the actions and the objects used
by the LDIAS program and place them in a symbol
table. This will allow the planner to recognize the
different contexts where objects are used.

Once the objects have been identified, the Object &
State Processor (OSP) has essential tasks to
accomplish. First the OSP must process the objects.
If the objects in the LDIAS program prompt have
not been recorded in the knowledge base or the
planner taxonomy, the planner must determine:

« if an object is created and used only during the
execution of the current LDIAS program,

« if an object should normally be output from
another LDIAS program and used by the current
program,

« if an object is created by the current LDIAS
program and if it should be output and made
available to other LDIAS programs.

The second task the OSP must perform is to trace the
state transitions the plan executor fires. As known
answers are given to prompts, the ILTI changes
states. When an answer for which no legal
transition exists, the OSP must create a new legal
transition from the current state given the new
input. The OSP must also determine which
microplan is to be executed when the new transition
is fired. It can be either an existing microplan, or
one suggested by the planner, or one supplied by
the human expert (trainer/user). This will trigger a
dialog between the trainer and the planner. The
planner will have to determine if the new transition
leads to an existing state or if it leads to a new
state.

If a new transition leads to an existing state, the
planner simply has to add a new legal transition to
the FSM since the initial state and final state for the
new transition are known. Also, if the initial and
final states of different transitions are the same,
Machine Learning (ML) processing may be
necessary to generalize and possibly merge the
transitions.

If a new transition leads to a new state, the state
transition must be added to the FSM and the process
repeated.

Whenever the planner cannot determine the origin of
an object, its use by other LDIAS tasks or its place
in the planner taxonomy or the knowledge base, the
trainer interface must present the problem to the
domain expert in order to classify the object. The
dialog between the domain expert and the planner
will depend on the amount of knowledge the planner
has gathered about the object.

Partial-plans and micro-plans are the main building
blocks used by the planner. Partial-plans are
sequences of state transitions that are designed to
answer the needs of frequent occurrences of similar
behavior. More specifically, LDIAS programs
usually process objects that have the same general
structure. Since these objects have the same
attributes, gathering their particular values can be
accomplished using the same subsequences of plans
leading to the reuse of partial-plans. The most

1495

prominent example is that most, if not all, LDIAS
programs require image files as input or output. In
these cases, a partial-plan that can build a file
specification can be reused. ‘

RESULTS -

The experimental goal was to determine the rate at
which new micro-plans have to be defined as the
number of image analysis programs on which the
system is trained grows. For that purpose, we have
used the planner on a sequence of four LDIAS
programs: DCT, TRUGEN, GSTAT, and SEPAR. The
order in which these programs were run is
significant in that this sequence is necessary to
produce and verify an image classification. Since
this sequence of programs performs a specific task,
it is to be expected that objects handled by the first
programs will also be used by the others. In figure
4, on the y-axis, we have plotted the percentage of
micro-plans that were reused by the planner while
developing plans for a sequence of programs.

16/25

7/20 5/17

2/21

DCT TRUGEN GSTAT SEPAR

Figure 4: The percentage of new micro-plans

The numbers next to the data points on the graph
represent the number of new micro-plans over the
total number of micro-plans required to successfully
execute the image analysis program. The graph
shows that the ratio of new micro-plans that have to
be created decreases as training of the system
continues. This allows us to conclude that the basic
objective of the planner development has been
achieved: the more the system is trained, the less
the system has to resort to the expert. In other
words, the planner exhibits and enhances reuse of
interface code, thereby minimizing the programming
effort necessary for their development.

CONCLUSION

The paper shows a design of a case-based planner
that applies machine learning techniques to the
problem of automated re-use of specialized interfaces
between the factual knowledge and the domain
knowledge in a RS expert system. The prototype
planner has been developed at CCRS. Introductory
experimentation, reported in the previous section,
indicates that there is significant potential for
micro-plan reuse when a training session involves
running a sequence of LDIAS programs that will
accomplish a specific image analysis task.
Furthermore, image analysts are relieved of having
to master PROLOG programming since the LEAR
system uses a graphics user interface that is well
removed from PROLOG. Early experience indicates

that even after a successful implementation, several
important research issues remain to be addressed.
One such question is how best to train the planner.
This is the problem of selection of training runs
that will be processed by the proposed system.
Should they all be similar?

Another question is what other leaming techniques
would produce interesting results in connection with
the approach presented here. The area of Case-based
Reasoning (CBR) [6] is potentially promising, and
will be further investigated.

Yet another challenge for the learning component of
LEAR is how, given more extensive knowledge of
image analysis goals and the different objects that
must be handled by LDIAS programs, the planner
could implement (with some assistance) the
procedures that would initialize the knowledge base
and process the results.

ACKNOWLEDGMENTS

The work discussed here was supported by the
Natural Sciences and Engineering Research Council
of Canada, as well as by the Canada Centre for
Remote Sensing. The third author kindly
acknowledges useful comments on this project from
the staff of NASA Ames Research Center's Al
Branch.
REFERENCES

[1] D. Charlebois, J.-C. Deguise, D. Goodenough,
S. Matwin, M. Robson A Case-based Planner
to Automate Development of ES Software for
Analysis of Remote Sensing Data, Procs.
IGARSS-91, pp.

[2] Goodenough, D.G., Goldberg, M., Plunkett, G.,
Zelek, 1., 1987, An Expert System for Remote
Sensing, IEEE Transactions on Geoscience and
Remote Sensing, Vol. GE-25, no. 3, pp 349-
359.

[3] Hendler, J., Tate, A., Drummond, M., 1990, Al
planning: systems and techniques, Al magazine,
vol. 11 no. 2, summer 1990, p. 82.

[4] Michalski, R.S., 1983, Machine Leaming: An
Artificial Intelligence Approach, Morgan
Kaufmann Publishers, pp82-129.

[51 Yoo, J. Fisher, D., 1991, Concept Formation
over Explanations and Problem-solving
Experience, Procs. of IJCAI-91, pp. 630-637,
Sydney, Australia.

[6] Riesbeck, C.K., Schank, R.C., 1989, Inside
Case-based Reasoning, Lawrence Erlbaum
Associates, Publishers.)

[7] Robson, M., Goodenough, D.G., Deguise, J-C.,
1990, Automated Program Execution in a
Hierarchical Expert System: RESHELL,
Proceedings of the 23rd DECUS Canada
Symposium.

[8] Waterman, D., Faught, W, Klahr, P,
Rosenschein, S., Wesson, R., 1986, Exemplary
programming: applications and design

considerations, In Expert systems: techniques,
tools and applications, edited by Klahr, P. and
Waterman D., Addison-Wesley, pp 273-309.

1496

