Machine Learning from Remote Sensing Analysis!

Daniel Charlebois, David G. Goodenough2, and Stan Matwin
University of Ottawa, Ottawa, Canada

Abstract

An intelligent system (SEIDAM - System of Experts
for Intelligent Data Management) is being developed for
answering queries about the forests and the environment
through the integration of remote sensing, geographic
information, models and field measurements. SEIDAM
consists of an hierarchical group of expert systems. In [1],
it was shown how machine learning and planning can be
used to create plans that execute image analysis software in
order to recognize specific objects and perform a variety of
different tasks. A query (task) could require, for example,
that forest inventory stored in a GIS be updated to reflect
past harvesting. As sensors become more numerous, the
choices of data and options to recognize objects become
more complex. These complexities can be reduced by
making use of case-based reasoning. Only the data needed
to answer the query will be used. The aim of case-based
reasoning is to avoid having to build a solution to a
problem from first principles, or by drawing on rare
expertise, by adapting a known solution for an old problem
to the new problem. There is a constantly growing variety
of data sets, providing information at various degrees of
accuracy and at often different cost. A non-expert user of
this data could greatly benefit from reusing specific cases
of queries, which convert the data into knowledge that
other users were seeking before. A case, in this context,
consists of a query and an example of the process (plan)
that answers that query using a single or a multi-sensor data
sel, and geographic information, such as forest cover,
topography, hydrology, etc. In our earlier work, we
constructed a planner (LEAR), a planning system for
creating expert systems by executing software for a case
and interacting with a human expert. We now wish to raise
the machine learning methods from creating expert
systems for executing existing software to creating new
rules (knowledge) derived from observing remote sensing
analysis cases. We will also show how knowledge about
objects acquired by the LEAR planner can be used to assist a
case-based reasoner during both its retrieval step and its
adaptation step.

I. Introduction
A. Background
The applications of forest management and

environmental monitoring increasingly depend upon
complex information systems. These information systems
integrate forest cover descriptions, topographic maps,
remote sensing, and application knowledge. The volume
of remote sensing data is increasing. By the year 2000,
each tracking station in North America could be receiving
in excess of one terrabyte of remote sensing data per day.
For most applications human screening of these data will
not be practical. Another change in remote sensing is in
the nature of the information which can be extracted. For
example, it will be possible to map chlorophyll A and B
distributions and timber volume using a mixture of imaging
spectrometer and polarimetric SAR data. In the future, it
will be possible to update these detailed attributes in a GIS.
The need to reduce data costs for monitoring of large areas
is leading to the data being available for the cost of
reproduction. Therefore, it is hypothesized that the data
management systemns for resources will make intelligent
selections of the incoming data in order to respond 1o
users’ goals, reduce complexity, and be more adaptable.

A project was begun in 1991 to develop a system of
experts for intelligent data management (SEIDAM) for
forest and environmental monitoring. The SEIDAM
Project is a project conducted under the Applied
Information Systems Research Program of NASA. The
partners in the project include the Canada Centre for
Remote Sensing (CCRS), the Pacific Forestry Centre
(PFC), the B.C. Ministry of Forests (BCMOF), the B.C.
Ministry of Environment, Lands and Parks (BCMELP), the
Royal Institute of Technology (KTH) of Sweden, and the
EEC's Joint Research Centre (JRC) at Ispra.

SEIDAM uses expert systems to control and integrate
remote sensing image analysis software, geographic
information systems, databases, and models. The user may
specify his or her goals in two ways, by asking a question
(query) or by specifying a list of desired products. The
expert systems can control software developed by the
partners, as well as commercial products, thus maximizing
software reuse. The expert systems are instantiations of
the shell RESHELL written in Quintus Prolog. The image
analysis software includes CCRS’ LDIAS software and the
PCI image analysis software. The geographic information
systems in SEIDAM are PAMAP GIS and GRASS. The

1This research was conducted under the SEIDAM (System of Experts for Intelligent Data Management) Project,
part of NASA's Applied Information Systems Research Program. Research support was also received from Forestry Canada,

NSERC, and FRDA.

2Also with Pacific Forestry Centre, Forestry Canada, Victoria, B.C.

—165—

Table 1. Test Data for Sites

Platform Sensor Description

LANDSAT Thematic Mapper 7-channel optical.

SPOT HRV 3-channel +1 optical.

NOAA AVHRR S-channel optical.

ERS-1 SAR C-band.

J-ERS-1 SAR L-band.

J-ERS-1 OPS optical

Alrcraft

CCRS Convair 580 SAR X, C -bands, HH and HV

Falcon Fanjet MEIS 8-channel optical; 2 stereo.

Falcon Fanjet MSS 11-channel optical.

NASA ER-2 AVIRIS 210-channel imaging spectrometer.
NASA ER-2 MAS MODIS optical simulator

NASA DC-8 AIRSAR C, L, P-band polarimetric SAR.
Falcon Fanjet Aerial photography

NASA ER-2 Aerial photography

Ultralite Spectron optical profiles

Cessna 206 CASI spectral profiles; 8-channel imagery.

GIS Sources

BCMELP TRIM topography 1:20,000 DTMs

EMR topography 1:50,000 and 1:250,000 DTMs
BCMOF forest cover 1:20,000 IGDS files.

M&B forest cover 1:20,000

CF1 forest cover 1:20,000 ARC/Info

models support predictive queries and include forest growth
and yield and pest spread over time. SEIDAM integrates
software executing on SUN and SGI workstations, and DEC
VAX computers. Motif is the windowing standard followed
for the system. More than two million lines of code
comprise SEIDAM.

B. Test Data and System Description

SEIDAM is a prototype of the kind of intelligent
resource information system needed during the next decade.
In order to develop and test SEIDAM, three test sites have
been selected in British Columbia. These test sites are
Greater Victoria Watershed (345 km2) north of Victoria,
B.C., Tofino Creek (270 km?2) in the Clayogquot Sound area
of western Vancouver Island, and Parson (300 km?2) in the
east Kootenay mountain range. The data to be collected
over these sites is listed in Table 1.

Remote sensing data are being obtained from six
satellite sensors and eight aircraft sensors. These sensors
cover the visible, infrared and microwave spectral regions.
The sensors also span a spatial resolution from one meter
to one kilometre. The digital elevation models (DEMs)
from BCMELP are at a scale of 1:20,000, on the NAD83
datum, ungeneralized, and with ridge and break lines. These
are the primary bases for the SEIDAM data. However, some
of the GIS sources are based on older DEMs or on

—166—

topographic maps at scales of 1:50,000 and NAD’'27.
SEIDAM has software to support the ingest of these data
and their transformation to a common topographic base, to
a correct edge-matched form, and to a common attribute
description.

The overall architecture of SEIDAM is shown in Figure
1. The rounded boxes with numbers denote expert systems
or collections of expert systems, such as SHERI. SHERI
(System of Hierarchical Experts for Resource Inventories)
is a collection of expert systems for using Thematic
Mapper imagery to update and to perform quality control of
forest cover GIS files. The major data stores for products,
queries, cases, and answers are shown. SEIDAM is initially
trained by examples which consist of a query, a single or a
multi-sensor data set, and geographic information, such as
forest cover and topography. The query or product list
establish the goals to be satisfied. A case is a plan to solve
a particular goal. These plans or cases are stored and
manipulated as described later in this paper. Based on these
cases, SEIDAM proceeds to solve the goals. In
recognizing forest attributes, SEIDAM can dynamically
select additional remote sensing data to achieve the goals.
The data fusion expert system matches a query with the
appropriate spatial resolution requirements based on
knowledge of object scales and dynamically selects the
best remote sensing data to recognize the forest object.

Request

User | for SEIDAM
Information Expert
Visualized User
Answer Interaction
16 o User i
Profile
Database;
Visualization L
Interface —» ais
P—Answer— 15 Requ
Prod
Answer Field
Database Data |
SHERI
Products 1
Pianner & Procs'sing
e R
Controller Expert
Cases ____‘ Toolkit
Database

Figure 1 - SEIDAM Architecture

II. Querles

SEIDAM is driven by the user selecting products or
queries for establishing data management and analysis
goals. An experienced user may know that a particular
product, such as a GIS file updated with remote sensing, can
satisfy a number of queries. Products can include maps,
updated GIS files, tabular summaries, visualizations,
temporal change products, text, values, etc. Alteratively,
the user can select a query. The most desirable interface for
queries would be to have a natural language system.
However, since that is beyond the present technical
capabilities, SEIDAM uses a queries list and offers the user
_the ability to create new queries using a restricted
vocabulary. The queries list was developed through
interviews and documents provided by the BCMOF and
BCMELP.

In this section our purpose is to show the issues
related 10 answering queries and the need for planning.
Examples of the queries supported by SEIDAM are:

How much forest do we have in the Tofino Creek test
site?
How much old growth forest is in the test sites?

Who was the source of the data used to provide this
answer?

Where has bud flush (new growth) been reduced?

What is the present timber volume of Douglas fir in
this watershed?

What is the yearly rate of forest depletion in this test
site over the past 20 years?

Where are the areas of highest root rot damage?

How much forest did or will we have in the Greater
Victoria Watershed?

Let us consider the first query, How much forest do we
have in the Tofino Creek test site? The types of possible
answers are: (1) hectares of forest, (2) a GIS file showing
forest distribution, (3) hectares of each species, (4) a GIS
file showing species distribution, (5) timber volume table
by species, and (6) a GIS file showing timber volume.
Answers (1) and (2) respond to a class selection separating
forest and non-forest. Answers (3) and (4) respond to a
class selection separating forest by species. Answers (5)
and (6) respond to a class selection separating species by
attributes. How the query is answered depends upon the
context, the date of the data on which the answer is built,
the accuracy goals, and the knowledge in the system of past
cases.

—167—

Let us suppose that the context for this query means
that it is necessary to update a forest cover GIS file with
Thematic Mapper imagery from 1993. What are the
requirements to answer this query. A list of the data
available is needed. For the Tofino Creek test site the
following data are available:

(a) six, 1:20,000 scale, NAD’'83 TRIM digital
elevation files,

(b) six 1:20,000 scale, NAD’27 forest cover GIS files
based on 1985 aerial photography;

(c) four LANDSAT images, three from Thematic
Mapper (1989, 1990, 1993), and one MSS image
(1973)

(d) several hundred ground samples of forest
mensuration collected by forest industry.

For each data source SEIDAM carries meta-knowledge.
The query could be answered by creating a mosaic of ail data
first. The query could also be answered by processing each
map independently and combining the results. In either
case, the digital elevation files would need to be processed
to create a digital terrain model with elevation, slope and
aspect. SEIDAM can call on the SHERI collection of expert
systems which process one map at a time. The forest cover
GIS files are on a different topographic base and datum and
need to be transformed to the TRIM base. To create a
mosaic over the test site, these forest cover files would also
need to be cleaned, complexed, and edge-matched. The
more recent LANDSAT TM images are geocoded to NAD'27
with 25 m pixels and no corrections for topographic relief.
The MSS image is in a raw form. To answer this query we
only need to use the 1993 TM image, and correct it to
NAD’83 and for topographic relief. However, other queries
may require combinations of imagery for which many
processes would need to be executed to create these
combinations.

The steps to answer a query can be ordered in a
systematic way and our goal is to create plans that contain
these steps. There are several methods to form plans, two
of which are “planning” and ‘“case-based reasoning”,
described hereafter. The presentation of the answer is an
important part of the processing and therefore, must be
included in the plan. This presentation will vary with the
characteristics of the user (user profile), the context of the
answer, the cost of the answer, and the information content
of the answer. The plans we create have to exhibit
flexibility in that the success of several processes are data
dependent and may require that the system dynamically
alter the plan.

ITI. Planning

One possible approach to create a system that can
automatically answer a query or manufacture a product (eg.
an updated forest cover map using remote sensing) is to use
a planning system. A planning system can be described as

follows:

Given:
- initial world state,
- a set of rules or operators,
- a goal or a conjunction of goals,

Then:
- find a sequence of operators that can transform the
initial world state into a state where all of the goals are
{rue.

Many planning paradigms exist, the simplest of
which is linear planning. One widely recognized
incarnation of a linear planning system is the STRIPS [2]
planner. In STRIPS, the initial world and world states are
described using a set of facts that are true at any given point
during planning. Rules describe how to change the world
state. In STRIPS, a rule has three components: a
precondition, a delete list and an add list. The
preconditions are the facts that must hold in the world
before the rule can be applied. The delete list is the list of
facts that no longer hold in the world after applying the
rule. The add list is the list of facts that are true in the world
after applying the rule.

The algorithm for STRIPS is:

procedure solve(Gs: list of goals)
repeat
select a goal G from Gs
if G is true in the current world then
no other processing is neessary
else
repeat
find a rule that has G in its add ist
solve the preconditions of the rule
until successful or no rules can be found
if not successful then exit(failure)
until Gs is empty.

What makes a planner linear is that the rule selection
mechanism is only guided by the current goal. Although
several rules may be applicable because their preconditions
hold in the world, they are not selected because they do not
add the current goal to the world. This approach can solve a
wide range of problems, but is incomplete because it does
not explore the whole space of possible world states to
achieve the end goal.

For the SEIDAM system, a linear planner could help to
create plans that can answer certain queries. For example,
if a forester queried SEIDAM in search of the amount of
forest in the Tofino Creek test site, it might use a rule such
as the following to start building a plan to answer the
query:

query_forest_cover_polygon(Site) ::
if maps_available(Site) and

—168—

topography_available(Site) and
forest_cover_available(Site) and
tm_data_available(Site) and
execute_map_update(Site)

then add forest_cover_polygon(Site)

For this example, in SEIDAM, the user goal is
expressed as forest_cover_polygon_available(Site).
Since this rule will add the user goal to the world, it would
be selected by a linear planner. What is also expressed in
this rule is that the information is not directly available
and that to create it, maps, topography and TM data must
all be available. If these data are available, the map update
can be performed by the SHERI sub-system.

Although linear planning can help to solve a wide
range of problems, there are iwo main reasons motivating
the use of Case-Based Reasoning (CBR) for plan formation
in SEIDAM. The first is that, to use a planning approach, a
planner would need a complete set of operators and objects
required to perform all tasks. The second is that, because
linear planning uses goals and preconditions to select
operators, the traversal of the space of possible world
states is incomplete. Hence possible solutions may be
overlooked. For the reasoning component of SEIDAM we
propose to have some of the knowledge (i.e. operators and
objects) given so that we may rely on linear planning to
create plans for simple goals. For more complex goals,
SEIDAM will use CBR and Analogical Plan Merging as
described in section V.

IV. Case Based Reasoning

The goal of Case-Based Reasoning is to provide
systems with the capability of solving problems based on
past experience rather than trying to form solutions from
first principal. In short, when a problem situation arises, a
CBR system will search through a case base for a similar
problem encountered in the past. If the case exists, the
plan used to solve the previous problem is retrieved. The
reasoning system must then modify the old plan such that
it takes into consideration the differences that exist
between the old problem and the new problem. There are
two main types of CBR systems: transformational analogy
[4] and derivational analogy [6].

In transformational analogy, the approach is to make
minor changes to the old solution until it fits the new
problem. As a simple example, consider the following
problem whereby a forester must query a polygon cover
map containing elevation and forest cover over a particular
site for the main tree species at a given elevation. If a
polygon cover map containing this information does not
exist, the forester must overlay a forest cover polygon map
over an elevation cover polygon map to create a new
polygon level to answer the query. When using the
PAMAP GIS, this can be accomplished by executing the
following plan:

start_program(analyzer)
get_map(clayoquot)
overlay_polygon_cover_levels(
forest_cover,
elevation_cover,
new_level)
stop_program(analyzer)
start_program(mapper)
get_map(clayoquot)
display_polygon_cover_level(new_level)

After executing this plan, the forester would be
looking at the new polygon cover containing the
information he requires. He can now simply query the
cover. To continue the example, the forester must now find
all forest species on north facing slopes at a different site,
say Parsons. The CBR system should recognize that these
two problems are similar and retrieve the solution that
solved the old problem and adapt it to the new problem by
substituting either the appropriate operators or operator
parameters. The result would be:

start_program(analyzer)
get_map(parsons)
overlay_polygon_cover_levels(
forest_cover,
aspect_cover,
new_level)
stop_program(analyzer)
start_program(mapper)
get_map(parsons)
display_polygon_cover_level(new_level)

Hence the result of transformational analogy is & plan
that is similar in structure to the original plan. In this
case, “clayoquot” was replaced by *“parsons” and
“elevation_cover” was replaced by “aspect_cover.”

Derivational analogy uses knowledge about past
operator selection during plan formation rather than
modifying an existing plan. In the example described
above, the forester had to go through the complete
polygon cover creation exercise. If the forester needs only
an approximate map of tree species on slopes facing north,
he need not go through the whole process of creating a new
polygon cover. He could, for example, display the aspect
polygon cover over a remotely sensed surface cover map of
forest species. Although the problems are similar, the
solutions are significantly different. To find the new plan,
a CBR system would have to review certain decisions that
were made during plan formation. Consider the following
(operators) rules:

get_cover_level(Level) :: (§3]
if current_map(Program, Map) and
Map has Level

then delete all(current_cover_level(_,_))
add current_cover_level(Map, Level).

—169—

polygon_over_surface(Polygon, Surface) :: (2)
if Surface is_a surface_cover_level and
Polygon is_a polygon_cover_level
current_map{ Program, Map) and
Map has Polygon and
Map has Surface
then delete current_polygon_cover_level(_, _) and
current_surface_cover_level(_, _)
add current_polygon_cover_level{ Map, Polygon) and
current_surface_cover_level(Map,Surface).

Rule (1) will make the specified level, polygon or
surface cover, the one currently displayed. Rule (2) will
display a polygon cover over a surface cover map. During
the planning process, the system would normally select
rule (1) simply because it was encountered first. However,
in derivational analogy, although the system can be
successful by using rule (1), a previous case has recorded
that, to get a simple view of tree species on north facing
slopes, rule (2) should be used. In short, derivational
analogy reuses past decision making experience.

V. System Design

The basic design of the Case-Based Planning system
can be seen in figure 2. As is shown, there will be two
types of users for the system. The first type of user is the
domain expert. His main responsibility is to provide the
system with all the necessary knowledge required to
perform a variety of remote sensing, image analysis, and
GIS tasks. The second type of user is the application user.
This person will enter queries for which the system will
attempt to consiruct a plan to answer the queries by
retrieving solution examples supplied by domain experts.
Plans are formed by adapting the old solutions to the new
problem via analogical reasoning.

In the following subsections, we will describe in more
detail the roles of each of the modules present in figure 2.
In the figure, the rounded boxes show what type of
information is travelling along the edges. The square
boxes are modules that perform the information
processing. The arrows indicate the direction of the flow of
information. The figure does not show the interface
between the users and the system. This interface will be a
module based on a work station windowing environment.

At the outset, the case base is empty. In other words,
the system has no experience in the expert's domain. The
expert’s responsibility is twofold. First, he or she must
supply the system with a minimal set of rules that describe
the basic methodology for performing a given set of
domain specific tasks. He must then provide the system
with examples (ie. cases) of tasks in which he must include:
the goal of the example, the sequence of steps that must be
executed to satisfy the goal, the information required for
the successful execution of each step and a description of
how the results should be presented to the application user.
The system will also learn about the objects and processing

involved in performing the different tasks and, as training
progresses, the burden of providing extensive details for
the examples will shift from the expert to the system. Part
of this behaviour is assured by the LEAR planning system.
As well as creating plans that use image analysis programs,
LEAR assists in collecting information about the objects
used in the domain (eg. image file formats, gradient
images, etc.).

A design issue that must be addressed is case
representation since it will determine how the system will
behave during training as well as during use. Hammond {4],
amongst others, has argued in favour of creating a case base
of complete plans. When a new problem arises, the plan
that matches the user's goals best is retrieved and adapted.
We consider that the system to be much more effective and
adaptable if we fragment the plans and store them in a
database. These fragmented plans can be combined in a
multitude of ways to achieve flexible goals. For example,
when performing digital image analysis, one method of
extracting information for the images is to apply
classification algorithms. The results of classification can
be used in different ways, however, there are several
classification methods. One is to apply a maximum
likelihood approach. Another is to use a segmentation
algorithm. If plans that use classification as a means of
extracting important image features are stored as complete
plans, we may be restricting the size of the planning search
space, but we may also be ignoring the possibilities of
combining fragments from different plans. Hence, as a first
draft prototype, plan fragments should be stored in such a
way that they can belong to several plans. As is the case in
LEAR, collecting plan fragments into a plan should guided
by the objects that require processing to satisfy goals. This
approach is analogous to the use of local cues in [5].

The next issue that must be addressed, is: what to
remember about plans. Some approaches suggest
remembering every plan created by the reasoning system.
Others are proponents of remembering how old plans were
adapted to satisfy new goals. We believe, that one
approach should not prevent the other. Obviously, during
training all the examples supplied by the domain expert
should be remembered in their entirety. Since we propose
1o store plan fragment, complete plans can be considered as
descriptions of how to assemble and adapt the plan
fragments. This would allow the system to store new plans
developed for the end users as well. The decision must still
be made, however, on what new plans should be
remembered.

Several approaches have been used to index case
bases. Some of the more prominent approaches suggest
that the first step is to notice a problem in order to
characterize the problem situation. The characterization is
the result of identifying relevant features, such as missing
information, thus leading to plan failure. These approaches
index the case bases according to the problems areas each
solution addresses. Although we have not fully explored

—170—

case

/ Domain expert

(cascs)“ collector @\ examples .

Plan
cases formation

- query)

-
~

Case Base

Application
user
plan —meswcr)
execution

lan
(,L——/—

Figure 2 - Case-Based reasoning design for SEIDAM

the indexing problem, it would seem interesting to apply
plan recognition techniques to highlight user goals to
enable plan formation. The general idea is to match a user's
high level problem specification with the "complete”
program examples given by the domain expert. Whenever
parts of the spécifications do not match substitute them
with other candidate plan fragments,

Obviously there must exist a measure to determine
whether plan fragments are candidates. Most other
approaches suggest methods akin to similarity matrices.
Very interesting ideas in this respect have been presented
in [3] whose CAESAR system receives program
specifications, and builds a program from slices. This
approach is based partly on data flow analysis. Briefly, a
slice is a program code fragment that deals with a particular
data object. Since using software libraries involves
extensive object manipulation, indexing slices may be
very similar to indexing plan fragments.

It is expected that, once it has a significant case base,
the system will be used to create plans to solve unforeseen
classes of problems. In an attempt to address these
problems, the system must be able to learn. The type of
learning has yet to be determined. However, some areas
clearly present opportunities:

« the knowledge base is organized as a hierarchy of
object classes; learning about these classes (i.e.:
generalization, specialization of object descriptions)
would seem to introduce the possibility of
generalizing or specializing plans as well,

« the plan fragment hierarchy, should also lend itself
well to learning techniques,

« the use of plan recognition as a tool to index into a
case base should provide insight into learning and
extending similarity matrices.

Plan formation is accomplished by retrieving from the
case base one plan for every user goal that must be
answered. Once these plans have been retrieved, they are
merge to create a final complete plan that can satisfy all of
the user goals. If for any reason a plan fails, the failure is
reported to the plan formation module so that, when
creating plans to solve similar goals, it will be aware of
possible failure and will try to suggest alternative plans.
One way to create an alternative plan is to remember cases
that can satisfy the same goals by using different
solutions.

Each case in the SEIDAM contains a goal, side effects
and a plan. The goal should be satisfied if the plan stored in
the same case is executed. Side effects are goals that can be
satisfied by the plan as a result of executing it although
they may not be part of the user goals. Hence, when a user
enters a goal conjunction, a plan for each conjunct will be

—171—

retrieved from the case base. These plans must then be
merged to form the final plan for the user goals. The merge
may not always succeed. The problem can generally be
linked to achieving goals in one plan inhibiting the
achievement of goals in the other. Since it is possible to
satisfy goals in different ways, side effects provide an easy
mechanism to identify the best cases to retrieve and merge.
The plan merging algorithm, Analogical Plan Merging
(APM(k)), is:

1- for each user goal select a "base” plan.

set a candidate list to empty for each plan
sct solution to empty

2- select a "current” operator from each plan.

3- while current operators from either plan do not clobber
the preconditions of the other plan's operators
place both operators in respective candidate lists
set current operators to next operators

if both plans do not interfere with each other
append candidate lists to the solution
exit
4- if not mutual clobbering then
append to solution all operators up to and including
clobbered operator
goto 3
else
set X to 1
5- in plan (X) while N < k and not safe
set current operator to next operator
ifN=kand X=1thenset X to2 goto 5
if N <k then
if safe because both goals satisfied then
append operators from plan X candidate list to
solution
set both candidate lists to empty
set both current operators
else
if safe because clobbered preconditions no longer
necessary’
append plan X operators to solution
if preconditions for operator X' ok then goto 3
else need extra operator(s)
call linear planner
if success goto 3
else select substitute operator
that has same effect as current as well as side
effects
that enable operator from other plan goto 3
if no substitute exists then
select another base plan for plan X
if a plan exists goto 2
else fail

where k is the number of operators to examine before
declaring the merge a failure.

VI. Conclusions

SEIDAM is a system for intelligently answering

queries for forest and environmental monitoring. Machine
learning is used in SEIDAM to create new expert systems,
to learn from training examples, and to learn from each
subsequent query episode. In this paper we describe the role
of planning and case-based reasoning in SEIDAM. It is
shown that the plans created must be dynamically flexible
to meet the varying characteristics of the users, the data-
driven successes and failures, and the changing nature of
the queries. The case-base is seeded with a minimum set of
cases that represent typical problems. As SEIDAM is used,
each new problem is treated as a new case which will be
used to refine the case base, and thus learn from experience.

The plan merging algorithm, Analogical Plan Merging
(APM(k)) was described briefly where “k” is the look-
ahead depth in assessing which operators to merge.
This algorithm addresses the clobbering of pre-conditions
in operators in a plan by the operators in another plan.

VII. References

[1] Charlebois, D., Goodenough, D.G., Matwin, §.,
Robson, M., Fung, K., Reuse of Plans as a Tool for
development of Remote Sensing Expert Systems,
Proceedings IGARSS-92, Houston Texas, May 26-29
1992, pp. 1493-1496, 1992.

[2] Fikes, R.E., Nilsson, N.J., STIRPS: a New Approach to
the Application of Theorem Proving to Problem
Solving, Artificial Intelligence, vol. 2, pp 189-208,
1972.

[31 Fouqué, G. and Matwin, S., "CAESAR : a system for
CAse basEd SoftwAre Reuse" Procs. of 7th Knowledge
Based Software Engineering Conference, McLean, Va,
1992,

[4] Hammond, K.J., Case-Based Planning: Viewing
Planning as a Memory Task. Perspectives in Artificial
Intelligence, Academic Press, Boston, Ma, 1989.

[5] Konolige, K., Pollack, M.E., ASCRIBING PLANS TO
AGENTS: Preliminary Report, IJCAI 89. Proceedings
of eleventh international joint conference on artificial
intelligence. 20-25 August 1989, pp924-930, 1989.

[6] Veloso, M., Learning by Analogical Reasoning in
General Problem Solving, PhD Thesis, CMU, August
1992.

—-172—-

