Queries and Their Application to Reasoning with Remote Sensing and GIS

David G. Goodenough, Daniel Charlebois!, Stan Matwin!, Doug MacDonald, and Alan J. Thomson

Natural Resources Canada
506 West Burnside Road

Victoria, B.C. V8Z 1MS, Canada

T: 604-363-0776 F: 604-363-0775 EMail: dgoodenough@al.pfc.forestry.ca
1Department of Computer Science
University of Ottawa
Ottawa, Ontario K1N 6N5, Canada
T: 613-564-5069 F: 613-564-9486 Email: {stan, daniel} @csi.uottawa.ca

ABSTRACT

An intelligent system is being developed which integrates
remote sensing data from aircraft and satellites with raster and vector
geographic information systems (GIS). This System of Experts for
Intelligent Data Management (SEIDAM) responds to queries or to
product requests to select the appropriate mix of sensors, data
processing methods and GIS to provide the answers. Recently,
natural language processing was introduced into SEIDAM as one of
the modes by which queries can be asked. The other two modes are
selection of a stored query from a library or selection of subjects and
attributes to create a query. Since SEIDAM contains more than one
terrabyte of data, queries must also deal with meta data about the
platforms, their sensors, and their properties. The long-term
knowledge for SEIDAM is stored in frames which are object-
oriented structures with multiple inheritance. Examples of queries
are: “How much forest is there in this test site?’ or “What are the
wavelengths of the MODIS airborne simulator?” or “What remote
sensing data are available for Clayoquot Sound before 19857”. A
query is parsed in order to extract a set of goals that are passed to
SEIDAM’s reasoning system. Case-based reasoning and goal-
regression are applied together to form a plan that, when executed,
will satisfy the goals. A plan may involve the use of several expert
systems that understand the use of GIS and the analysis of remotely
sensed imagery. For the query “How much forest ...”, for
example, SEIDAM creates a plan that would check the forest
inventory GIS and evaluate the timeliness of the corresponding GIS
files (maps). Older GIS files would be updated using satellite data
such as Thematic Mapper, prior to responding to the query. The
presentation format of the answers must be matched with the
characteristics of the questioner. SEIDAM also allows the user to
specify one or more products to be created. These products likely
meet the need of a collection of queries. Products supported
include: updated GIS files, temporal change products, maps (forest
cover, timber volume, canopy chemistry, infected trees, etc.),
enhanced imagery, values and tabular summaries, text, processing
and dissemination histories. This paper describes the flow of a
query in SEIDAM, the structure for processing this query, and the
application of case-based planning.

INTRODUCTION

In the latter part of this decade, users will be overwhelmed by
the amounts of available satellite remote sensing data. SEIDAM
(System of Experts for Intelligent Data Management) is conceived as
asystem to utilize only the data necessary to provide an answer to a
user’s question. SEIDAM also supports the users’ demands for
products, such as GIS file updates with remote sensing. An
overview of query processing is presented as a guide to query
format and type.

A query must pass through five processing stages before an
answer is available (Thomson, Goodenough, 1994). These stages
are: the query parser, processor selection, the processor, processor
output, and the output translator to the answer. Basic queries are
What? Where? When? Why? How? Who? In some cases the
converse of Why?; i.e. Why not? is the focus of the question. We
deal only with What? Where? When? How? and Who? types of
questions, noting that "How much...?" and "How many...?" are
"What?" types of questions rather than "How?" types of questions
which require an explanation rather than a value. "Why?" will be
included in terms of explanation by the expert systems, but not in
terms of explaining policy decisions. Policy decisions belong to the
user. Example questions considered in SEIDAM are as follows:

0-7803-1497-2/94 $4.00 © 1994 IEEE

1199

How much forest do (or did or will) we have?

What is the forest productivity expected on this site over the
next 200 years?

Where has bud flush been reduced by damage agents?

What is the present timber volume of Douglas fir in this
watershed?

What is the yearly rate of forest depletion in the Greater
Victoria Watershed over the past 20 years?

Who was the source of the data used to provide. this answer?
What would happen to the forest cover if the annual
allowable cut was increased by 20%?

Which sensor is most suitable for measuring the amount of
selective harvesting in Parson?

Interviews were held with domain experts in the B.C.
Ministry of Forests and the B.C. Ministry of Environment, Lands
and Parks. As a result, a long list of typical queries applicable to
remote sensing and GIS were developed. These queries and the
methods to obtain the answers represent a case. Ideally, the query
parser would understand the English expression through a natural
language translator system (NLS). Use of NLS with GIS is
described by Krzanowski (1990), who covers the major issues in
such systems, including ellipses, parsing time, and fuzzy requests.
Ellipses are where a question or instruction to the system obtains its
context from previous questions or instructions. Fuzzy requests are
questions which include terms such as "near" or "in the vicinity of".
A special type of ellipsis of major importance to simulation
modelling is questions of the form "What would happen if ..M
Krzanowski suggests that existing NLS are not powerful enough
for use with spatial information systems. Note that SEIDAM adds a
temporal dimension to the spatial dimensions.

The query parser must redefine the query into goals which the
problem solver can understand in order to select the lower level
expert systems and processors to answer the query. The parser
should probably build on previous queries (ellipses), although this
functionality has not yet been developed. The user can also
command SEIDAM to create products which support a multitude of
queries. SEIDAM also can use a prearranged set of queries which
are stored in a query library. The capability to support the use of
fuzzy queries, such as "What is the logging distribution near this
park?” where "near” is a fuzzy term, will be added this year.

The issue of selecting a processor to answer a query is based
on the fact that we have a choice of models, a choice of GIS
platforms and a terrabyte of aircraft and satellite remote sensing data
from multiple optical and radar sensors. There are a large number
of processing methods from which to choose. We need to match
parsed query elements with outputs possible from specific
processes. Meta knowledge about processes and data must be
available to the system. SEIDAM dynamically selects data sources
(Fig. 1) (Thomson, 1994) in order to achieve the user goals defined
by the initial queries and possible additional interactions with the
user.

Expert system frames contain meta knowledge about the
available processes and their required inputs and possible outputs.
The outputs of some processes can be used as the inputs to others.
A problem solver has been developed which can use this meta
knowledge to generate the process call sequence for a particular
output. When there is more than one method of obtaining the

Figure 1. The complexity of using data to answer queries.

required output, the problem solver using case-based reasoning
selects the appropriate alternative.

When the output from a series of processes has been obtained
as a result of a query, it must be presented to the user in the most
appropriate way. The output translator which puts the answer into a
format that the user can easily assimilate. For example, the query
“how much forest will we have in 50 years in the Tofino Creek
watershed?” requires the selection of existing forest cover GIS files,
updating these files with the latest remote sensing measurements of
forest attributes, predicting growth and yield over the next 50 years,
and generating the output (answer). The user may wish to visualize
the forest cover in three dimensions in order to estimate possible
changes in a scenic corridor. Or the user may want a GIS file
containing forest species distribution with timber volume estimates.
Or the user may simply want a number, such as the number of
hectares by species. The tradeoffs for the output translator in
answering a query involve three components: mode of information
presentation, task environment of the decision, and individual
characteristics of the decision maker (Wheeler and Sharda 1991).
Wheeler and Sharda (1991) describe an expert system for selecting
presentation mode. SEIDAM offers a wide-range of visualization
options. In order for the user to not be overwhelmed with, for
example, GIS detail, the system needs to be able to generalize the
outputs to the scales desired by the user. This research issue will be
addressed in phase 2 of this project. In the area of visualization, our
experience in multimedia presentations is valuable for suggesting
animation approaches to complex visualizations, while the
production of text output geared to specific user concepts and
languages has been illustrated by Thomson and Taylor (1990).

QUERY CREATION

SEIDAM offers the user two ways to specify a goal: product
selection from a list of available products and applications; and
queries. Queries can be entered into SEIDAM using a natural
language system. These queries can be interrogative, as given
above, or imperative, such as “Describe the sensor characteristics of
the LANDSAT 5 sensors.” The NLS can interpret these queries
into parsed goals on which the problem solver can operate.
However, natural language processing has many pitfalls and this
method of query input can easily breakdown if words (and
concepts) are used which are not in the language dictionary.

A second way of specifying a query is through a windows-
based set of choices. One window provides a list of often desired
attributes, such as forest cover or timber volume. A second
window allows a choice of modifiers such as average or maximum,
etc. The user also specifies the time window of interest and the
spatial location by symbolic name, map sheet number(s), or
graphical area selection. The result is a query in English which
represents the user goals.

A third way of selecting a query is to choose a query from the

1200

query library window. The user can alter this query to represent the
current goals. For example, the query “What is the yearly rate of
forest depletion in the Greater Victoria Watershed over the past 20
years?” could be modified to “What is the rate of forest depletion in
Tofino Creek over the past 40 years?”. Case-based reasoning
would then use the case pertaining to the first query and modify it to
create the operator (processor) sequence to achieve the desired
answer. To achieve success in this system, we make use of
planning and the merging of plans.

PLANNING (PROBLEM SOLVING) AND PLAN
MERGING

The user specifies a conjunctive goal through a query. The
planner starts with this conjunctive goal, as shown in figure 2. The
approach taken is to solve each conjunct separately and then
combine the solutions. Goal conjunctions can represent two types
of goals: user goals and operator goals. User goal conjunctions are
the initial goals that a problem solver must attempt to satisfy.
Operator goal conjunctions, or subgoals, are the pre-conditions of
operators that the problem solver is attempting to apply. A potential
issue is that user goal conjunctions can introduce problems such as
pre-condition clobbering (Sussman, 1973), whereas operator goal
conjunctions should not. Initially, we assume that the operator goal
conjunctions are correct. This assumption will be relaxed later. Ifa
solution is found, we assume that it is correct, since it is based upon
the domain knowledge entered into SEIDAM.

| I Query

Translator

Cases

s |_|meta-knowledge

L plans

Planner/

r~ derivations
Controller

operators

Agents
Y

result/product/
answer

Figure 2. Architecture of the Problem Solving Environment.

Each goal in a conjunction is either independent of the others,
dependent on the others, or shares resources with the others. Given
a correct knowledge base, it should be possible to solve these types
of goal conjunctions in the following ways:

1- independent goals: solve one goal from the initial state, then
solve the second goal from the final state produced by the
application of the solution to the first goal. Since goals are
independent and operators prevent one solution from
clobbering another, this approach will always produce a
solution.

2- dependent goals: the order in which we attempt to satisfy
each goal in this type of conjunction becomes important.
Often, simply imposing an ordering on the goals might
allow the problem solver to find a solution.

3- independent goals that share resources: solve first goal from

the initial state, solve the second goal from the original initial
state, and merge both solutions.

In accordance with the operator correctness assumption
above, the problem solver should solve each user goal
independently and then merge the solutions. Although this differs
from the appending in 1 above, independent goals can be handled in
this way since they do not share any resources. Operators from
each solution can be applied while only considering the partial
ordering in each solution. In 3, this is how we suggest goals
should be handled. User goals that are not independent, can also be
handled in this way since, as a result of merging, there is a partial
ordering that is imposed on the operators. This leads to the
application of a generic “solve algorithm”.

The solve algorithm for multiple goals:

solve((Goal and Goals), Solution) if
solve_one_goal(Goal, Soll) and
solve(Goals, Sol2) and
merge(Soll, Sol2, Solution).

The solve_one_goal procedure uses one of three problem
solving paradigms: transformational analogy, derivational analogy,
and goal regression (Charlebois, 1993). To avoid searching a large
state space, the procedure will first attempt to find a case based on
the transformational analogy paradigm, that can completely satisfy
the goal by applying modification rules to account for differences
between the original case and the current goal. If a transformational
case exists, then the system will solve the other subgoals and
subsequently merge the solutions. If the system cannot find a
transformational case, it must resort to knowledge-based searching.
Hence, the system attempts to solve the goal by retrieving a
derivational case. The purpose of this approach is twofold. First,
where several solutions exist, a derivational case will provide the
system the justification for selecting one over another. Second,
since the search mechanism used here is goal-regression,
derivational analogy allows the system to select operators that would
otherwise be overlooked, thus expanding the scope of the search by
considering yet more solutions. Finally, if there does not exist a
case, either transformational or derivational, the system will use
goal-regression.

Let us examine relaxing the operator correctness assumption
by relaxing the order of the preconditions of the operator. If we
disregard the assumption, the consequence is that satisfying the
operator pre-conditions .may not be possible. The ordering of an
operator's pre-conditions also represents the ordering imposed on
the operators used to satisfy them. If an operator is incorrect in the
ordering of its pre-conditions, it cannot be used and possible
solutions will not be considered. In SEIDAM use is made of AVS
for visualization and PCI image analysis software. Consider the
following operators for loading the results of an analysis with PCI
into an AVS network. These operators are STRIPS-like operators
\lvglgl3 gy)reconditjons, add and delete lists ((Fikes, 1981), (Charlebois,

avs_pci_set_red(Channel, Reply) ::
if synched(avs) and
current_image(Filename)
thendelete synched(avs) and
all(red_channel(_))
add red_channel(Channel).
avs_pci_read_image(Filename, Reply) ::
if loaded(image_display_net) and
synched(avs)
thendelete synched(avs) and
all(current_image(_))

add current_image(Filename).

1201

There is a need to connect PCI image channels to AVS color
channels. If an expert system submits the goal red_channel(1),
goal-regression would first select the operator avs_pci_set_red,
whose pre-conditions are synched(avs) and current_image(
Filename). Goal regression would attempt to find a solution to
synched(avs) first and then try to find a solution to current_image(
Filename) afterward. Since the avs_pci_read_image operator
deletes the fact synched(avs), it cannot be used. However, if the
pre-conditions of the avs_pci_set_red operator were reversed, goal
regression would succeed. By solving each conjunct independently
and then ordering the operators by merging them, it is possible to
find a solution to the complete conjunction even though the initial
ordering would fail. The domain knowledge which led to the
creation of these operators still has to be correct.

The plan merge algorithm applies techniques similar to those
from the NOAH (Sacerdoti, 1975) algorithm as well as the
algorithm introduced by Yang (Yang, 1992). The main objective is
to combine two plans into one by way of a "sorting by merging"
approach. The algorithm assumes that the operators in each plan are
processed with respect to their respective partial ordering. The
operators from both plans are examined to determine if additional
ordering constraints are necessary when they are combined into one.
This can be achieved by using a conflict critic as proposed by
Sacerdoti and applying the interaction definitions proposed by
Yang. The important difference between these authors and this
works is that when a mutual clobbering situation arises, rather than
failing, the merge algorithm will use two different methods to
resolve the conflict: (1) select one of the plans and determine if,
within the next k operators, the protected pre-conditions subject to
the clobbering become unprotected; if this occurs then the merge can
proceed; (2) if (1) fails, then check the case-base for a solution.

Mutual pre-condition clobbering occurs when two competing
operators from different plans must be applied. As a result of
applying one of the operators, some facts in the world are no longer
true and thus prevent the application of the other operator. It is
conceivable, that after applying several operators from one plan, that
it will be possible to apply the operators from the other. In the
merge algorithm (Analogical Plan Merge: APM(k)), a constant k
represents the number of operators the system will examine before
declaring a failure to mmerge two plans (Charlebois, 1993). If a
solution cannot be found after examining k operators, the system
will try to find a case that addresses the merge problem.

QUERY ANSWERING - AN EXAMPLE

In this section, we will step through a detailed example to
illustrate the behavior of the system. The query presented to the
system has two subgoals. The solution for the first subgoal is
explained in sub-section below and shows how goal-regression and
transformational analogy can be successfully integrated. In the
second sub-section, we show how two solutions, one for each
subgoal, can be merged into one solution although some operators
may conflict. The system will be presented with the following
query: “Create a map that shows the forest depletion in Clayoquot
Sound over the past 20 years and create a map separating western
cedar and Douglas fir canopy over Clayoquot Sound.”

SEIDAM will provide a map (GIS files) of the desired site
that contains the forest distribution per age and species dated 20
years ago, thematic-mapper (TM) and color infra-red geocoded
imagery over the site, as well as image processing and visualization
tools. To create the forest depletion map, the TM imagery would
have to be processed to detect the areas representing depleted forest
cover. Color infra-red imagery can be used to improve the
boundaries discriminating between Douglas fir and western cedar.

Solving the First Subgoal

The system will first try to find a transformational analogy
case that satisfies each subgoal. If it cannot find a transformational
analogy case, it will try to find a derivational analogy case. If it
cannot find a derivational analogy case, it will try goal-regression.
For the example query above, we will show how the system
produces a plan for the first part of the query conjunction; i.e.
computing the forest depletion. If the system does :10t have a case

that can satisfy the query directly, but does have a case that
classifies imagery and a case that can display a map, then it could
use the operator given below by using goal-regression:

depletion_overlay(Site, Time) ::
if image_classified(Site, Time) and
displayed_map(Site, Time)
thenadd depletion(Site, Time).

The original goal is now replaced by this operator's pre-
conditions and the system attempts to solve them separately. Since
cases exist to solve each of the subgoals, they are retrieved, adapted
to the current problem and subsequently merged into one solution.

If the solutions for the two pre-conditions for the
depletion_overlay operator are:

subgoal: image_classified(Site, Time)

plan (1): start(visualization_program)
load(tm_image(Site, Time))
classify(tm_image(Site, Time))
set_overlay(red, old_growth)
set_overlay(green, depleted_area)

subgoal: displayed_map(Site, Time)

plan (2): start(visualization_program)
load(map(Site, Time))
set_level(forest_level)
display(map(Site, Time))

then the merge algorithm would behave as follows:

Set the current operator from either plan to the first one and
the time index to zero (the time index indicates the point of insertion
of an operator into the final solution). The next step is to determine
if the current operators are applicable at the current time index. In
the example, both operators are applicable. The system then checks
for operator redundancy; i.e. are they identical operators or is the
subgoal for which they are used already satisfied by the side effects
of previous operators in the final solution. In the example, the
current operators, start(visualization_program), from both plans are
identical resulting in the removal of one of them. If we assume that
the deleted operator is from plan 2, then the current operator in plan
1 is still start(visualization_program) , the current operator from
plan 2 is load(map(Site, Time)), and the final solution is empty.
Since the current operator in plan 2 is not applicable, the current
operator from plan 1 is and it does not clobber the pre-conditions of
plan 2's current operator, the operator from plan 1 is inserted into
the final solution. The current operator from plan 1 is now set to
load(tm_image(Site, Time)). For the remaining operators from
either solution, their are no conflicts thus resulting in:

start(visualization_program)

load(map(Site, Time))

set_level(forest_level)

display(map(Site, Time))

load(tm_image(Site, Time))
classify(tm_image(Site, Time))
set_overlay(red, old_growth)
set_overlay(green, depleted_area)
depletion_overlay(Site, Time)
save_map(forest_depletion_cover_level)

plan A

At this point the depletion_overlay operator was appended.
The most important consideration whenever an operator is inserted
into the final solution is to update the current state description. All
search based methods actually simulate the application of each
operator. If a new one is added, the state description at the point of
insertion, as well as at all the following time indices, must reflect the
effect of the insertion.

Satisfying Both Subgoals
The system now has the following case to solve; namely to

create a map that separates Douglas fir and western cedar forest
covers:

1202

start(visualization_program) plan B
load(map(Site, Time))

set_level(forest_level)

display(map(Site, Time))

load(color_ir_image(Site, Time))
segment(color_ir_image(Site, Time))
label_segments(color_ir_image(Site, Time))
color_ir_overlay(Site, Time)

save_map(canopy_cover_level)

For the sake of discussion, we assume only one image can be
overlaid on a map at any given time. The system must now merge
the plans, A and B, for the two subgoals in our example query. The
behavior is similar to what is described above up until the system
must load the imagery. At that point, there is mutual pre-condition
clobbering since only one image can be overlaid at a time. In the
previous section, we introduced the APM(k) algorithm. For this
example, k is set to 6 and the merge proceeds as follows. The
system would select one of the two solutions and append up to k of
its operators to the final solution while checking at each step if the
pre-conditions of the current operator of the other plan are still not
satisfied. Suppose that the system chose the solution for the forest
depletion first, plan A. The final solution this far would include
every operator up to the conflicting ones and is shown in (1) below.
In (2) below, by selecting plan B first, the system would star*
appending the operators to the final solution. If by the time the
number of appended operators reaches k, the current operator in
plan A is not applicable, then the system fails. However, while
appending the operators the system discovered that the
label_segments operator could not be applied because its
preconditions were not satisfied; namely, the GIS did not contaia
labels, and so TM classification needed to be used to provide the
labels for the high resolution, aerial photography segmentation. The
system then backtracks to the point of conflict and tries to append
plan A to the final solution, (3) below.

start(visualization_program) 1)
load(map(Site, Time))
set_level(forest_level)
display(map(Site, Time)) Conflict found with multiple
image loads
start(visualization_program) 2)
load(map(Site, Time))
set_level(forest_level)
display(map(Site, Time))
load(color_ir_image(Site, Time))
segment(color_ir_image(Site, Time)) Conflict found with
label segments since
the GIS did not
contain class labels
which are supplied by
TM classification.
start(visualization_program) 3)
load(map(Site, Time))
set_level(forest_level)
display(map(Site, Time))
load(tm_image(Site, Time))
classify(tm_image(Site, Time))
set_overlay(red, old_growth)
set_overlay(green, depleted_area)
depletion_overlay(Site, Time)
save_map(forest_depletion_cover_level) Can now append rest

of Plan B.

After appending the operators from plan A, k has been
reached. However, since the pre-conditions of the current operator
from plan B are now satisfied, the rest of that plan can now be
appended to the final solution:

start(visualization_program)
load(map(Site, Time))
set_level(forest_level)
display(map(Site, Time))
load(tm_image(Site, Time))
classify(tm_image(Site, Time))

set_overlay(red, old_growth)

set_overlay(green, depleted_area)
depletion_overlay(Site, Time)

save_map(forest_depletion_cover_level)
load(color_ir_image(Site, Time))
segment(color_ir_image(Site, Time))
label_segments(color_ir_image(Site, Time))
color_ir_overlay(Site, Time)

save_map(canopy_cover_level)

Since Plan A has now performed the TM classification, the
label_segments operator for the color imagery will now succeed. At
this point we have expended no major processing costs in creating
this plan. Moreover, a domain expert training the system could ask
for another plan or modify this plan. This shows the flexibility for
the system to construct a plan for a conjunctive query which
integrates remote sensing and GIS data. This example plan could be
applied and may fail if the accuracies of the desired result are not
met. In this case, the problem solver would attempt to create a new
plan if the meta knowledge about cases indicated that there were
more successful, but more costly, approaches.

CONCLUSIONS

In this paper we began by describing query entry in the
SEIDAM system. There are three means of entering queries:
selection from a query library, natural language processing, and
selection of query attributes. To obtain an answer to a query, a
problem solver needed to construct a plan of analysis from a set of
processes and data. This plan consisted of an ordered sequence of
operators. This was followed by a description bf the merging of
plans which had operators with preconditions which were clobbered
by the addition of other operators. An example demonstrating
flexible merging of plans to respond to queries has been given. The
problem solver is written in Prolog and has been demonstrated for
some queries for Thematic Mapper imagery and GIS. Now under
development is the addition of the aircraft sensor analysis and the
growth and yield models.

ACKNOWLEDGEMENTS

The SEIDAM (System of Experts for Intelligent Data
Management) Project is a project under NASA’s Applied
Information Systems Research Program (Joe Bredekamp, Glenn
Mucklow) and we thank NASA for their on-going support and
participation. The project is also supported by the Government of
Canada (Natural Resources Canada, Industry Canada), the province
of British Columbia (Ministry of Forests; Ministry of Environment,
Lands and Parks), the EEC’s Joint Research Centre at Ispra, and the
Royal Institute of Technology in Stockholm, Sweden. We are most
grateful for the contributions of these organizations and their co-
investigators. Additional information on SEIDAM can be obtained
by writing the authors or by accessing our World Wide Web site
(http://pine.pfc.forestry.ca). We also wish to thank NSERC for its
support for the research by Professor Stan Matwin and Daniel
Charlebois.

REFERENCES

Charlebois, D., Goodenough, D.G., Matwin, S., “Machine
Learning from Remote Sensing Analysis,” in Proceedings of
IGARSS-93 Symposium, 1993, pp. 165-172.

Fikes R., Hart P., Nilsson N., “Learning and Executing
Generalized Robot Plans”, in Readings in Al Ed. B.Webber
and N.Nilsson, Palo Alto, CA, 1981.

Krzanowski, R.M. “Natural language interface to geographic
databases. Experiments with Intelligent Assistant.” in
Proceedings of GIS '90 Symposium, Vancouver, B.C.
March 1990, pp. 513-518.

Sacerdoti, E.D., “The Non-Linear Nature of Plans,” In
Proceedings of IICAI-75, 1975, pp. 206-213.

Sussman, G.J., “A Computational Model of Skill
Acquisition,” Ph.D. Thesis, M.I.T, Cambridge, MA., 1973

1203

Thomson, A.J. “Modelling considerations in the
SEIDAM project.” SEIDAM Workshop Report. 1994.

Thomson, A.J., Goodenough, D.G., “SEIDAM Queries and
their Processing.” SEIDAM Workshop Report. 1994.

Thomson, A.J., Taylor, C.M.A. . “An expert system for
diagnosis and treatment of nutrient deficiencies of Sitka
spruce in Great Britain.” in AI Applications vol. 4, 1990,
pp. 44-52.

Wheeler, B.C., and Sharda, R. “INFORMEX: An expert
system to enhance information presentation.” In:
Knowledge-Based Systems and Neural Networks, Elsevier
Science Publishing Co.R. Sharda et. al. (eds.), 1991. p.
99-115.

Yang, Q. “Merging Separately Generated Plans with
Restricted Interactions,” in tational Intelligence,
Volume 8, Number 4, 1992, pp. 648-676.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

